mlots_max#

# Parameters
variable = "mlots_max"
stream = "native"
long_name = "Ocean Mixed Layer Thickness Defined by Sigma T"
from IPython.display import display, Markdown
# Dynamically generate markdown content
markdown_text = f" This notebook compares area-weighted maps, in some cases, vertical profiles for {variable} in different basins."

# Display the updated markdown content
display(Markdown(markdown_text))

This notebook compares area-weighted maps, in some cases, vertical profiles for mlots_max in different basins.

%load_ext autoreload
%autoreload 2
%%capture 
# comment above line to see details about the run(s) displayed
import sys, os
sys.path.append(os.path.abspath(".."))
from misc import *
import glob
print("Last update:", date.today())
%matplotlib inline
months = ['January', 'February', 'March', 'April', 
          'May', 'June', 'July', 'August', 'September', 
          'October', 'November', 'December']
# load data
ds = []
for c, p in zip(casename, climo_path):
  file = glob.glob(p+'{}.{}.{}.??????-??????.nc'.format(c, stream, variable))[0]
  ds.append(xr.open_dataset(file))
def identify_xyz_dims(dims):
    dims = tuple(dims)

    z_options = ['zl', 'z_l', 'zi', 'z_i']
    y_options = ['yh', 'yq']
    x_options = ['xh', 'xq']

    z_dim = next((dim for dim in dims if dim in z_options), None)
    y_dim = next((dim for dim in dims if dim in y_options), None)
    x_dim = next((dim for dim in dims if dim in x_options), None)

    # Set default values for coordinates and area
    x_coord = y_coord = area_var = None

    if y_dim == 'yh' and x_dim == 'xh':
        x_coord = 'geolon'
        y_coord = 'geolat'
        area_var = 'areacello'
    elif y_dim == 'yq' and x_dim == 'xh':
        x_coord = 'geolon_v'
        y_coord = 'geolat_v'
        area_var = 'areacello_cv'
    elif y_dim == 'yh' and x_dim == 'xq':
        x_coord = 'geolon_u'
        y_coord = 'geolat_u'
        area_var = 'areacello_cu'

    return x_dim, y_dim, z_dim, x_coord, y_coord, area_var
dims = identify_xyz_dims(ds[0][variable+'_annual_mean'].dims)
def annual_plot(variable, dims, label):
    area = grd_xr[0][dims[5]].fillna(0)
    x = dims[0]; y = dims[1]; z = dims[2]
    lon = dims[3]; lat = dims[4] 
    model = []
    for i in range(len(label)):
        if z is None:
            model.append(np.ma.masked_invalid(ds[i][variable+'_annual_mean'].values))
        else:
            model.append(np.ma.masked_invalid(ds[i][variable+'_annual_mean'].isel({z: 0}).values))

        if i == 0:
            xyplot(model[i], 
                grd_xr[i].geolon.values, grd_xr[i].geolat.values, area.values,
                title = 'Annual mean '+str(variable)+ ' ('+str(ds[0].units)+')', 
                suptitle= label[i]+', '+ str(start_date) + ' to ' + str(end_date), 
                extend='max')
        else:
            xyplot((model[i]-model[0]), 
                grd_xr[i].geolon.values, grd_xr[i].geolat.values, area.values,
                title = 'Annual mean '+str(variable)+ ' ('+str(ds[0].units)+')', 
                suptitle= label[i]+' - '+label[0]+', '+ str(start_date) + ' to ' + str(end_date), 
                extend='max')
            
    fig, ax = plt.subplots(figsize=(8,4))
    for i in range(len(label)):
        if z is None:
            ds[i][variable+'_annual_mean'].weighted(area).mean(x).plot(y=y, 
                                            ax=ax, label=label[i])
        else:
            ds[i][variable+'_annual_mean'].isel({z: 0}).weighted(area).mean(x).plot(y=y, 
                                            ax=ax, label=label[i])
            
    ax.set_title('Zonally averaged '+str(variable)+' ('+str(ds[0].units)+'), annual mean')
    ax.grid()
    ax.legend();
    return

Annual mean#

annual_plot(variable, dims, label)
../_images/8084e23c7ee29cf887107299692eb8d89280d604bfcac64854d910ec959be6c7.png ../_images/aa2314051f981f9d1d41800cf66444f167fa0d4b486fda7e6cbeaf54c5083aa1.png

Monthly climatology#

area = grd_xr[0][dims[5]].fillna(0)
x = dims[0]; y = dims[1]; z = dims[2]
lon = dims[3]; lat = dims[4]
model = []
for i in range(len(label)):
    if z is None:
        model.append(ds[i][variable+'_monthly_climatology'])
    else:
        model.append(ds[i][variable+'_monthly_climatology'].isel({z: 0}))
        
    if i == 0:
        g = model[i].plot(x='geolon', y='geolat', col='month', col_wrap=3,
            figsize=(12,12), robust=True,
            cbar_kwargs={"label": variable + ' ({})'.format(str(ds[0].units)),
                        "orientation": "horizontal", 'shrink': 0.8, 'pad': 0.05})
        
        plt.suptitle(label[i]+ ', ' +str(start_date) + ' to ' + str(end_date), y=1.02, fontsize=17)  

    else:
        g = (model[i]-model[0]).plot(x='geolon', y='geolat', col='month', col_wrap=3,
            figsize=(12,12), robust=True,
            cbar_kwargs={"label": variable + ' ({})'.format(str(ds[0].units)),
                        "orientation": "horizontal", 'shrink': 0.8, 'pad': 0.05})
        plt.suptitle(label[i] + ' - ' + label[0]+ ', ' +str(start_date) + ' to ' + str(end_date), 
                     y=1.02, fontsize=17)  
../_images/9de8e44c95e1c57762a7c3564717ae809b51bb8f8d52b26fb35109f6075c0475.png
def monthly_plot(variable, dims, label, m):
    area = grd_xr[0][dims[5]].fillna(0)
    x = dims[0]; y = dims[1]; z = dims[2]
    lon = dims[3]; lat = dims[4]
          
    fig, ax = plt.subplots(figsize=(8,4))
    for i in range(len(label)):
        if z is None:
            ds[i][variable+'_monthly_climatology'].isel(month=m).weighted(area).mean(x).plot(y=y, 
                                               ax=ax, label=label[i])
        else:
            ds[i][variable+'_monthly_climatology'].isel({z: 0, 'month': m}).weighted(area).mean(x).plot(y=y, 
                                                ax=ax, label=label[i])
    ax.set_title(str(months[m])+', zonally averaged '+str(variable)+' ('+str(ds[0].units)+')')
    ax.grid()
    ax.legend();
    return

January#

m=0
monthly_plot(variable, dims, label, m)
../_images/b119799263ded4d7a81b13e9ff5667b9e3d63685f1337d93131c6a2fd85251a3.png

February#

m=1
monthly_plot(variable, dims, label, m)
../_images/716dc3a905ef0c0444f379d65654722f350b9e90791cd020d3ada45fa1ace223.png

March#

m=2
monthly_plot(variable, dims, label, m)
../_images/659abc50d863465f6288f876e5a68fc1ff620bf9292f1e39c2eae2020d758fef.png

April#

m=3
monthly_plot(variable, dims, label, m)
../_images/851bab5404e8480ad638b6ae9e38d4368ef31d4d464148459ccd2ce4db658df7.png

May#

m=4
monthly_plot(variable, dims, label, m)
../_images/6e7a60a0dc3aae3ac9b1e1e366816d2c43cc6abb3fefd57bc4eaf30a22363c7e.png

June#

m=5
monthly_plot(variable, dims, label, m)
../_images/b172f23c2dab2d66dbc48d3e058451f3f30b8a385bfd758e749be52b2062a1ff.png

July#

m=6
monthly_plot(variable, dims, label, m)
../_images/d11ab25cf64ff3a06a9a9b67931daaa05028eb5d580ccb8e410ea02da9b0b219.png

August#

m=7
monthly_plot(variable, dims, label, m)
../_images/fe432d3c3c3f06704af7b113e62d62692249098cb056c001101ad5dd0bb5100d.png

September#

m=8
monthly_plot(variable, dims, label, m)
../_images/1b374512c2fbfe0ebe952f37e24ca121b36ee47ed1b77471900c6672c58eb9cf.png

October#

m=9
monthly_plot(variable, dims, label, m)
../_images/6bed3d8ae3f7f2d2a47e978bf7e1595d02510a1ca4ce800d6bf9016ed75d0549.png

November#

m=10
monthly_plot(variable, dims, label, m)
../_images/782e0789d00d96e4282a6e2983333d9e2a8c287ea8a54482d02c67f5d1c69a30.png

December#

m=11
monthly_plot(variable, dims, label, m)
../_images/4b28f7d6ec54ad12cdd26a1206f8c875ee952abc71ad94473165168a02523895.png

By basins#

Monthly climo @ surface#

# GMM, update this
basin_code = xr.open_dataset('/glade/work/gmarques/cesm/tx2_3/basin_masks/basin_masks_tx2_3v2_20250318.nc')['basin_masks']
area = grd_xr[0][dims[5]].fillna(0)
x = dims[0]; y = dims[1]; z = dims[2]
model_mean_wgt = []
    
for i in range(len(label)):
    basin_code_dummy = basin_code.rename({'yh': y, 'xh': x})
    if z is None:
        model = ds[i][variable+'_monthly_climatology']
    else:
        model = ds[i][variable+'_monthly_climatology'].isel({z: 0})
    
    model_mean_wgt.append((model * basin_code_dummy).weighted(area*basin_code_dummy).mean(dim=[y, x]))
        
for i in range(len(label)):
    g = model_mean_wgt[i].plot(x="month", yincrease=False, col="region", col_wrap=5, label=label[i])
    
fig = g.fig  # not g.figure
fig.suptitle(str(variable)+' ('+str(ds[0].units)+')', fontsize=16)
fig.tight_layout()
fig.subplots_adjust(top=0.9)
for ax in g.axes.flat:
    ax.grid(True);
ax.legend()
<matplotlib.legend.Legend at 0x14fe0b0d1010>
../_images/04a85870f77a3dde644563e69407fb8a88c434cc25271c4cac57d8db1e5c15cc.png

Vertical profiles#

Averaged over annual means

z_max=1000 # change this to 6000 to see full profile

if stream == 'z' and (z == 'z_l' or z == 'z_i'):

    model_mean_wgt = []
    
    for i in range(len(label)):
        basin_code_dummy = basin_code.rename({'yh': y, 'xh': x})
        model = ds[i][variable+'_annual_mean']
        
        model_mean_wgt.append((model * basin_code_dummy).weighted(area*basin_code_dummy).mean(dim=[y, x]))
            
    for i in range(len(label)):
        g = model_mean_wgt[i].sel(**{z: slice(0., z_max)}).plot(y=z, yincrease=False, col="region", col_wrap=5, label=label[i])
    
    fig = g.fig  # not g.figure
    fig.suptitle(str(variable)+' ('+str(ds[0].units)+')', fontsize=16)
    fig.tight_layout()
    fig.subplots_adjust(top=0.9)
    plt.legend()
    for ax in g.axes.flat:
        ax.grid(True);