mlotst_max#

# Parameters
variable = "mlotst_max"
stream = "native"
long_name = "Ocean Mixed Layer Thickness Defined by Sigma T"
from IPython.display import display, Markdown
# Dynamically generate markdown content
markdown_text = f" This notebook compares area-weighted maps, in some cases, vertical profiles for {variable} in different basins."

# Display the updated markdown content
display(Markdown(markdown_text))
The history saving thread hit an unexpected error (OperationalError('database is locked')).History will not be written to the database.

This notebook compares area-weighted maps, in some cases, vertical profiles for mlotst_max in different basins.


%load_ext autoreload
%autoreload 2
%%capture 
# comment above line to see details about the run(s) displayed
import sys, os
sys.path.append(os.path.abspath(".."))
from misc import *
import glob
print("Last update:", date.today())
%matplotlib inline
months = ['January', 'February', 'March', 'April', 
          'May', 'June', 'July', 'August', 'September', 
          'October', 'November', 'December']
# load data
ds = []
for c, p in zip(casename, climo_path):
  file = glob.glob(p+'{}.{}.{}.??????-??????.nc'.format(c, stream, variable))[0]
  ds.append(xr.open_dataset(file))
def identify_xyz_dims(dims):
    dims = tuple(dims)

    z_options = ['zl', 'z_l', 'zi', 'z_i']
    y_options = ['yh', 'yq']
    x_options = ['xh', 'xq']

    z_dim = next((dim for dim in dims if dim in z_options), None)
    y_dim = next((dim for dim in dims if dim in y_options), None)
    x_dim = next((dim for dim in dims if dim in x_options), None)

    # Set default values for coordinates and area
    x_coord = y_coord = area_var = None

    if y_dim == 'yh' and x_dim == 'xh':
        x_coord = 'geolon'
        y_coord = 'geolat'
        area_var = 'areacello'
    elif y_dim == 'yq' and x_dim == 'xh':
        x_coord = 'geolon_v'
        y_coord = 'geolat_v'
        area_var = 'areacello_cv'
    elif y_dim == 'yh' and x_dim == 'xq':
        x_coord = 'geolon_u'
        y_coord = 'geolat_u'
        area_var = 'areacello_cu'

    return x_dim, y_dim, z_dim, x_coord, y_coord, area_var
dims = identify_xyz_dims(ds[0][variable+'_annual_mean'].dims)
def annual_plot(variable, dims, label):
    area = grd_xr[0][dims[5]].fillna(0)
    x = dims[0]; y = dims[1]; z = dims[2]
    lon = dims[3]; lat = dims[4] 
    model = []
    for i in range(len(label)):
        if z is None:
            model.append(np.ma.masked_invalid(ds[i][variable+'_annual_mean'].values))
        else:
            model.append(np.ma.masked_invalid(ds[i][variable+'_annual_mean'].isel({z: 0}).values))

        if i == 0:
            xyplot(model[i], 
                grd_xr[i].geolon.values, grd_xr[i].geolat.values, area.values,
                title = 'Annual mean '+str(variable)+ ' ('+str(ds[0].units)+')', 
                suptitle= label[i]+', '+ str(start_date) + ' to ' + str(end_date), 
                extend='max')
        else:
            xyplot((model[i]-model[0]), 
                grd_xr[i].geolon.values, grd_xr[i].geolat.values, area.values,
                title = 'Annual mean '+str(variable)+ ' ('+str(ds[0].units)+')', 
                suptitle= label[i]+' - '+label[0]+', '+ str(start_date) + ' to ' + str(end_date), 
                extend='max')
            
    fig, ax = plt.subplots(figsize=(8,4))
    for i in range(len(label)):
        if z is None:
            ds[i][variable+'_annual_mean'].weighted(area).mean(x).plot(y=y, 
                                            ax=ax, label=label[i])
        else:
            ds[i][variable+'_annual_mean'].isel({z: 0}).weighted(area).mean(x).plot(y=y, 
                                            ax=ax, label=label[i])
            
    ax.set_title('Zonally averaged '+str(variable)+' ('+str(ds[0].units)+'), annual mean')
    ax.grid()
    ax.legend();
    return

Annual mean#

annual_plot(variable, dims, label)
../_images/a54cbed5d15a44e89eddb99ec6f3f94e6db8519dba85030dc7dace29f01cbc1a.png ../_images/e0ff1f5bdad375d03de55bfc0316b63a4bb023cc2f6df9bfce337321ea531fe0.png

Monthly climatology#

area = grd_xr[0][dims[5]].fillna(0)
x = dims[0]; y = dims[1]; z = dims[2]
lon = dims[3]; lat = dims[4]
model = []
for i in range(len(label)):
    if z is None:
        model.append(ds[i][variable+'_monthly_climatology'])
    else:
        model.append(ds[i][variable+'_monthly_climatology'].isel({z: 0}))
        
    if i == 0:
        g = model[i].plot(x='geolon', y='geolat', col='month', col_wrap=3,
            figsize=(12,12), robust=True,
            cbar_kwargs={"label": variable + ' ({})'.format(str(ds[0].units)),
                        "orientation": "horizontal", 'shrink': 0.8, 'pad': 0.05})
        
        plt.suptitle(label[i]+ ', ' +str(start_date) + ' to ' + str(end_date), y=1.02, fontsize=17)  

    else:
        g = (model[i]-model[0]).plot(x='geolon', y='geolat', col='month', col_wrap=3,
            figsize=(12,12), robust=True,
            cbar_kwargs={"label": variable + ' ({})'.format(str(ds[0].units)),
                        "orientation": "horizontal", 'shrink': 0.8, 'pad': 0.05})
        plt.suptitle(label[i] + ' - ' + label[0]+ ', ' +str(start_date) + ' to ' + str(end_date), 
                     y=1.02, fontsize=17)  
../_images/bd32941791bd088f1ec1175445522171cf11bc9d84941ea660c7328bc5df3c1f.png
def monthly_plot(variable, dims, label, m):
    area = grd_xr[0][dims[5]].fillna(0)
    x = dims[0]; y = dims[1]; z = dims[2]
    lon = dims[3]; lat = dims[4]
          
    fig, ax = plt.subplots(figsize=(8,4))
    for i in range(len(label)):
        if z is None:
            ds[i][variable+'_monthly_climatology'].isel(month=m).weighted(area).mean(x).plot(y=y, 
                                               ax=ax, label=label[i])
        else:
            ds[i][variable+'_monthly_climatology'].isel({z: 0, 'month': m}).weighted(area).mean(x).plot(y=y, 
                                                ax=ax, label=label[i])
    ax.set_title(str(months[m])+', zonally averaged '+str(variable)+' ('+str(ds[0].units)+')')
    ax.grid()
    ax.legend();
    return

January#

m=0
monthly_plot(variable, dims, label, m)
../_images/72b036cf5287512f4df391f3f1ee41b637b63a54bbbc661f6462cf43bb5a1b9a.png

February#

m=1
monthly_plot(variable, dims, label, m)
../_images/d5a85cf1376934b4be2356543ebc874aed0ed43b9db2f20753a384ebb6da0039.png

March#

m=2
monthly_plot(variable, dims, label, m)
../_images/08b436322bf7eb43825020e97880ac8aa87e1306d05d4358e66ffd0f9a1a1e07.png

April#

m=3
monthly_plot(variable, dims, label, m)
../_images/b846945b50981e6d56e4a08533ac6feff2c5e012377b81d3d4e849129ee46481.png

May#

m=4
monthly_plot(variable, dims, label, m)
../_images/9c18c073f0cceb60475faf120fd58626d8305ea5ba01d399d8a4ccf4c5e257aa.png

June#

m=5
monthly_plot(variable, dims, label, m)
../_images/a2ed8b95071f1ed968892e1b1c398fa218d9f5dff024ec7aa8c75d3303a65645.png

July#

m=6
monthly_plot(variable, dims, label, m)
../_images/633277f0e48a9b65e58ba30a41be5070a08da26db96d363f3c710ddd382d188b.png

August#

m=7
monthly_plot(variable, dims, label, m)
../_images/4553e506b7d4b46c3c2104eeddff1ab0785706e1c681948367f8eda0425a8f24.png

September#

m=8
monthly_plot(variable, dims, label, m)
../_images/15960f1517562d55d9b8f33b7dd2d1dc0ff164ede3220574be5128db5fed71cb.png

October#

m=9
monthly_plot(variable, dims, label, m)
../_images/d21ca45caf31f463bd88ea62c61dffb8eebf01e67d0e0082392121a100a147d9.png

November#

m=10
monthly_plot(variable, dims, label, m)
../_images/0daf4dc66acd4f4800ddb59d31c186a272fd32fee073e4b40974d1d4cd77fadd.png

December#

m=11
monthly_plot(variable, dims, label, m)
../_images/35bf02b49324487f7e53a82c39315fd9d9be715a5d97e46f35df210942e3eed4.png

By basins#

Monthly climo @ surface#

# GMM, update this
basin_code = xr.open_dataset('/glade/work/gmarques/cesm/tx2_3/basin_masks/basin_masks_tx2_3v2_20250318.nc')['basin_masks']
area = grd_xr[0][dims[5]].fillna(0)
x = dims[0]; y = dims[1]; z = dims[2]
model_mean_wgt = []
    
for i in range(len(label)):
    basin_code_dummy = basin_code.rename({'yh': y, 'xh': x})
    if z is None:
        model = ds[i][variable+'_monthly_climatology']
    else:
        model = ds[i][variable+'_monthly_climatology'].isel({z: 0})
    
    model_mean_wgt.append((model * basin_code_dummy).weighted(area*basin_code_dummy).mean(dim=[y, x]))

# Concatenate along a new dimension
model_mean_wgt_all = xr.concat(model_mean_wgt, dim='cases')
model_mean_wgt_all = model_mean_wgt_all.assign_coords({'cases': label})

g = model_mean_wgt_all.plot(x="month", hue="cases", yincrease=False, col="region", col_wrap=5)
    
fig = g.fig  # not g.figure
fig.suptitle(str(variable)+' ('+str(ds[0].units)+')', fontsize=16)
fig.tight_layout()
fig.subplots_adjust(top=0.9)
for ax in g.axes.flat:
    ax.grid(True);
../_images/745e48d9ce10768720f96340d17ad316cbd743b93883ad40078a8405bb0ac4bb.png

Vertical profiles#

Averaged over annual means

z_max=1000 # change this to 6000 to see full profile

if stream == 'z' and (z == 'z_l' or z == 'z_i'):

    model_mean_wgt = []
    
    for i in range(len(label)):
        basin_code_dummy = basin_code.rename({'yh': y, 'xh': x})
        model = ds[i][variable+'_annual_mean']
        
        model_mean_wgt.append((model * basin_code_dummy).weighted(area*basin_code_dummy).mean(dim=[y, x]))

    # Concatenate along a new dimension
    model_mean_wgt_all = xr.concat(model_mean_wgt, dim='cases')
    model_mean_wgt_all = model_mean_wgt_all.assign_coords({'cases': label})
    
    g = model_mean_wgt_all.sel(**{z: slice(0., z_max)}).plot(y=z, hue="cases", yincrease=False, col="region", col_wrap=5, lw=2)
    
    fig = g.fig  # not g.figure
    fig.suptitle(str(variable)+' ('+str(ds[0].units)+')', fontsize=16)
    fig.tight_layout()
    fig.subplots_adjust(top=0.9)
    # Apply grid to each subplot
    for ax in g.axes.ravel():
        ax.grid(True)