h#

# Parameters
variable = "h"
stream = "z"
long_name = "Layer Thickness"
from IPython.display import display, Markdown
# Dynamically generate markdown content
markdown_text = f" This notebook compares area-weighted maps, in some cases, vertical profiles for {variable} in different basins."

# Display the updated markdown content
display(Markdown(markdown_text))

This notebook compares area-weighted maps, in some cases, vertical profiles for h in different basins.

%load_ext autoreload
%autoreload 2
%%capture 
# comment above line to see details about the run(s) displayed
import sys, os
sys.path.append(os.path.abspath(".."))
from misc import *
import glob
print("Last update:", date.today())
%matplotlib inline
months = ['January', 'February', 'March', 'April', 
          'May', 'June', 'July', 'August', 'September', 
          'October', 'November', 'December']
# load data
ds = []
for c, p in zip(casename, climo_path):
  file = glob.glob(p+'{}.{}.{}.??????-??????.nc'.format(c, stream, variable))[0]
  ds.append(xr.open_dataset(file))
def identify_xyz_dims(dims):
    dims = tuple(dims)

    z_options = ['zl', 'z_l', 'zi', 'z_i']
    y_options = ['yh', 'yq']
    x_options = ['xh', 'xq']

    z_dim = next((dim for dim in dims if dim in z_options), None)
    y_dim = next((dim for dim in dims if dim in y_options), None)
    x_dim = next((dim for dim in dims if dim in x_options), None)

    # Set default values for coordinates and area
    x_coord = y_coord = area_var = None

    if y_dim == 'yh' and x_dim == 'xh':
        x_coord = 'geolon'
        y_coord = 'geolat'
        area_var = 'areacello'
    elif y_dim == 'yq' and x_dim == 'xh':
        x_coord = 'geolon_v'
        y_coord = 'geolat_v'
        area_var = 'areacello_cv'
    elif y_dim == 'yh' and x_dim == 'xq':
        x_coord = 'geolon_u'
        y_coord = 'geolat_u'
        area_var = 'areacello_cu'

    return x_dim, y_dim, z_dim, x_coord, y_coord, area_var
dims = identify_xyz_dims(ds[0][variable+'_annual_mean'].dims)
def annual_plot(variable, dims, label):
    area = grd_xr[0][dims[5]].fillna(0)
    x = dims[0]; y = dims[1]; z = dims[2]
    lon = dims[3]; lat = dims[4] 
    model = []
    for i in range(len(label)):
        if z is None:
            model.append(np.ma.masked_invalid(ds[i][variable+'_annual_mean'].values))
        else:
            model.append(np.ma.masked_invalid(ds[i][variable+'_annual_mean'].isel({z: 0}).values))

        if i == 0:
            xyplot(model[i], 
                grd_xr[i].geolon.values, grd_xr[i].geolat.values, area.values,
                title = 'Annual mean '+str(variable)+ ' ('+str(ds[0].units)+')', 
                suptitle= label[i]+', '+ str(start_date) + ' to ' + str(end_date), 
                extend='max')
        else:
            xyplot((model[i]-model[0]), 
                grd_xr[i].geolon.values, grd_xr[i].geolat.values, area.values,
                title = 'Annual mean '+str(variable)+ ' ('+str(ds[0].units)+')', 
                suptitle= label[i]+' - '+label[0]+', '+ str(start_date) + ' to ' + str(end_date), 
                extend='max')
            
    fig, ax = plt.subplots(figsize=(8,4))
    for i in range(len(label)):
        if z is None:
            ds[i][variable+'_annual_mean'].weighted(area).mean(x).plot(y=y, 
                                            ax=ax, label=label[i])
        else:
            ds[i][variable+'_annual_mean'].isel({z: 0}).weighted(area).mean(x).plot(y=y, 
                                            ax=ax, label=label[i])
            
    ax.set_title('Zonally averaged '+str(variable)+' ('+str(ds[0].units)+'), annual mean')
    ax.grid()
    ax.legend();
    return

Annual mean#

annual_plot(variable, dims, label)
../_images/f626428a3d36e8515af0aa83ad1f87ba8955b945b2e02bb4b65b89d2c9756dd8.png ../_images/9830412be580c16d5f90c668ab53b99c775013b2c39b7fdfbd22e482a1b83c43.png

Monthly climatology#

area = grd_xr[0][dims[5]].fillna(0)
x = dims[0]; y = dims[1]; z = dims[2]
lon = dims[3]; lat = dims[4]
model = []
for i in range(len(label)):
    if z is None:
        model.append(ds[i][variable+'_monthly_climatology'])
    else:
        model.append(ds[i][variable+'_monthly_climatology'].isel({z: 0}))
        
    if i == 0:
        g = model[i].plot(x='geolon', y='geolat', col='month', col_wrap=3,
            figsize=(12,12), robust=True,
            cbar_kwargs={"label": variable + ' ({})'.format(str(ds[0].units)),
                        "orientation": "horizontal", 'shrink': 0.8, 'pad': 0.05})
        
        plt.suptitle(label[i]+ ', ' +str(start_date) + ' to ' + str(end_date), y=1.02, fontsize=17)  

    else:
        g = (model[i]-model[0]).plot(x='geolon', y='geolat', col='month', col_wrap=3,
            figsize=(12,12), robust=True,
            cbar_kwargs={"label": variable + ' ({})'.format(str(ds[0].units)),
                        "orientation": "horizontal", 'shrink': 0.8, 'pad': 0.05})
        plt.suptitle(label[i] + ' - ' + label[0]+ ', ' +str(start_date) + ' to ' + str(end_date), 
                     y=1.02, fontsize=17)  
../_images/13632a4a3c03c22fb29e768586340c36e814f7649e1efb0fe6f160c56431e349.png
def monthly_plot(variable, dims, label, m):
    area = grd_xr[0][dims[5]].fillna(0)
    x = dims[0]; y = dims[1]; z = dims[2]
    lon = dims[3]; lat = dims[4]
          
    fig, ax = plt.subplots(figsize=(8,4))
    for i in range(len(label)):
        if z is None:
            ds[i][variable+'_monthly_climatology'].isel(month=m).weighted(area).mean(x).plot(y=y, 
                                               ax=ax, label=label[i])
        else:
            ds[i][variable+'_monthly_climatology'].isel({z: 0, 'month': m}).weighted(area).mean(x).plot(y=y, 
                                                ax=ax, label=label[i])
    ax.set_title(str(months[m])+', zonally averaged '+str(variable)+' ('+str(ds[0].units)+')')
    ax.grid()
    ax.legend();
    return

January#

m=0
monthly_plot(variable, dims, label, m)
../_images/386bac5c4eb3702494c018877da837d04043866f93e521690d121818fbd04c2e.png

February#

m=1
monthly_plot(variable, dims, label, m)
../_images/d88d97e49aee389dfca89937d76b62b41395106b634e6dee2d6d7635979ea768.png

March#

m=2
monthly_plot(variable, dims, label, m)
../_images/11148cf7f2f79ab4f1e10ea6e7856d21c45944c0316d11622ac85b802691fd5a.png

April#

m=3
monthly_plot(variable, dims, label, m)
../_images/3e4a404a7393daa3bdbd864cd35530a5631336d4594037c323693db48f4eccea.png

May#

m=4
monthly_plot(variable, dims, label, m)
../_images/485730261a2735b8dfd94f4542e1f82fb01001b1d57f080143cdeecbe03ca89a.png

June#

m=5
monthly_plot(variable, dims, label, m)
../_images/0db4cfba9078e85dfc8efec888cd486d29f42d81616c3134fbeb52fe1ab9301f.png

July#

m=6
monthly_plot(variable, dims, label, m)
../_images/d91450f6740d2aa937526694b37c00c30095e8d881b6f2623fc06b04f5f93944.png

August#

m=7
monthly_plot(variable, dims, label, m)
../_images/4f82ad6ed4795092e9bf31431863b568861461dd3e52e9116315e682b4bf2c8f.png

September#

m=8
monthly_plot(variable, dims, label, m)
../_images/92069cf58539430e224f4107f5f45f77f3c2f80125705379b683b01f4cccee56.png

October#

m=9
monthly_plot(variable, dims, label, m)
../_images/55137e295b8689742dd91d0b52bfa98646e28bf2596177e23169256f09ba9832.png

November#

m=10
monthly_plot(variable, dims, label, m)
../_images/3bf51358c2a726e61e2ee2de791626e5443e6fe3ded247bf7ee47401b0c8dd34.png

December#

m=11
monthly_plot(variable, dims, label, m)
../_images/dec1a97986539cdd80741cfdf8a9d11b6fd91254428a8294306bc9a54ecd8506.png

By basins#

Monthly climo @ surface#

# GMM, update this
basin_code = xr.open_dataset('/glade/work/gmarques/cesm/tx2_3/basin_masks/basin_masks_tx2_3v2_20250318.nc')['basin_masks']
area = grd_xr[0][dims[5]].fillna(0)
x = dims[0]; y = dims[1]; z = dims[2]
model_mean_wgt = []
    
for i in range(len(label)):
    basin_code_dummy = basin_code.rename({'yh': y, 'xh': x})
    if z is None:
        model = ds[i][variable+'_monthly_climatology']
    else:
        model = ds[i][variable+'_monthly_climatology'].isel({z: 0})
    
    model_mean_wgt.append((model * basin_code_dummy).weighted(area*basin_code_dummy).mean(dim=[y, x]))

# Concatenate along a new dimension
model_mean_wgt_all = xr.concat(model_mean_wgt, dim='cases')
model_mean_wgt_all = model_mean_wgt_all.assign_coords({'cases': label})

g = model_mean_wgt_all.plot(x="month", hue="cases", yincrease=False, col="region", col_wrap=5)
    
fig = g.fig  # not g.figure
fig.suptitle(str(variable)+' ('+str(ds[0].units)+')', fontsize=16)
fig.tight_layout()
fig.subplots_adjust(top=0.9)
for ax in g.axes.flat:
    ax.grid(True);
../_images/3cfaa0df1444f3a374c10624f08b57f0329d4bc1a855b58f2ac6128754724622.png

Vertical profiles#

Averaged over annual means

z_max=1000 # change this to 6000 to see full profile

if stream == 'z' and (z == 'z_l' or z == 'z_i'):

    model_mean_wgt = []
    
    for i in range(len(label)):
        basin_code_dummy = basin_code.rename({'yh': y, 'xh': x})
        model = ds[i][variable+'_annual_mean']
        
        model_mean_wgt.append((model * basin_code_dummy).weighted(area*basin_code_dummy).mean(dim=[y, x]))

    # Concatenate along a new dimension
    model_mean_wgt_all = xr.concat(model_mean_wgt, dim='cases')
    model_mean_wgt_all = model_mean_wgt_all.assign_coords({'cases': label})
    
    g = model_mean_wgt_all.sel(**{z: slice(0., z_max)}).plot(y=z, hue="cases", yincrease=False, col="region", col_wrap=5, lw=2)
    
    fig = g.fig  # not g.figure
    fig.suptitle(str(variable)+' ('+str(ds[0].units)+')', fontsize=16)
    fig.tight_layout()
    fig.subplots_adjust(top=0.9)
    # Apply grid to each subplot
    for ax in g.axes.ravel():
        ax.grid(True)
../_images/3b5e44c97b6a73365b947f5194bc263371f64f256289fe468a064215f3d08a3a.png