Section transports#

%load_ext autoreload
%autoreload 2
%%capture 
# comment above line to see details about the run(s) displayed
from misc import *
import nc_time_axis
%matplotlib inline
transports = []
for path, case in zip(ocn_path, casename):
  ds = xr.open_dataset(path+case+'_section_transports.nc').sel(time=slice('0001-01-01',end_date))
  transports.append(ds)

Agulhas#

section_name = 'Agulhas_Section'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/c201d383c49d5573cd9fd84eabe9a6cab951c9bf272fa3ee5ceafd10d0f27548.png

Barents Opening#

section_name = 'Barents_Opening'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/3d7c81241232a0437170df13589489300efcb6815ccea7566210bd3cb6b44a06.png

Bering Strait#

section_name = 'Bering_Strait'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/b8b84394df06fbe64f570851e2ba215e1ff5e11c511820b3beec98b00bc1263d.png

Davis Strait#

section_name = 'Davis_Strait'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/ef531b146b876894d6e758f99e16e8229ef8d73c6f23340e4f591a39493d9256.png

Denmark Strait#

section_name = 'Denmark_Strait'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/76eea36c9ef4fbef8ae37af8329db18d22a7800ecf41bb38967e57aa166dea63.png

Drake_Passage#

section_name = 'Drake_Passage'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/635262751330644e39e313eceffb8e0524d61158204e6533dc9c56f6656dda23.png

English Channel#

section_name = 'English_Channel'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/2effdcf98ec79f153ec841d9f495237180b20f85a1f8379e3bcb7665c206d07c.png

Fram Strait#

section_name = 'Fram_Strait'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/47c795bb8584aab4b077abd2f14d8172b7f90ab0ea3f63dd0a2bda5299a8c981.png

Florida Bahamas#

section_name = 'Florida_Bahamas'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/0ceba3400a37efc15e8807a273905a76eb22795c965a1a1d91215e80c64ba26a.png

Florida Bahamas extended#

section_name = 'Florida_Bahamas_extended'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/ef17367cde98254a8b3afd7910d6fa924cfaef55932dce27e844e4b178759981.png

Florida Cuba#

section_name = 'Florida_Cuba'
vals = None#get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/537973222c1798cebf5842f307face3c8831238ca108f193b322fe1489224712.png

Gibraltar Strait#

section_name = 'Gibraltar_Strait'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/7eed2217be16e489dc199185c746f77e7171218bc5fecb04a96207781854ea1c.png

Iceland Norway#

section_name = 'Iceland_Norway'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
Section 'Iceland_Norway' not found in the '154' dataset. Skipping plot.
<Figure size 1000x600 with 0 Axes>

Indonesian Throughflow#

section_name = 'Indonesian_Throughflow'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/0339c85a1aa6dfb240a84a669bfb296c6d6184621888bad93fe2c56d0a783b7e.png

Mozambique Channel#

section_name = 'Mozambique_Channel'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/3da06b3229c6752b4376e9ad16f5b1064d20811183e1f4dc15b7923cb8d8e97e.png

Pacific undercurrent#

section_name = 'Pacific_undercurrent'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/18eaa61c3a63336c67271e82a82d92f4e5798eb23f42460b912cf6a51cedeac6.png

Taiwan Luzon#

section_name = 'Taiwan_Luzon'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/ca1921a81e388cf275c5f50322fe1b706e540381a0b5d66271946dc53d243d94.png

Windward Passage#

section_name = 'Windward_Passage'
vals = get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/0adf7edb7556fabe1a8932e18ece080306378dea542ae1b4c0c1f4093bc1cf25.png

Robeson Channel#

section_name = 'Robeson_Channel'
vals = None #get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/d32784ee04f4a8b7d0153435424ae71a1357e26e7cb3f20369117ba1d7c351a3.png

Yucatan Channel#

section_name = 'Yucatan_Channel'
vals = None #get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
_images/9c0443b4932b5eb08b869a9b4c048a668f8bf1871e195956fd1c46ab5ded3a2e.png

Bosporus Strait#

section_name = 'Bosporus_Strait'
vals = None #get_transport_range_or_mean(diag_config_yml['Transports']['sections']['h.'+section_name])
plot_transport_time_series(transports, section_name, label, to_yearly=True, observed_values=vals)
Section 'Bosporus_Strait' not found in the '154' dataset. Skipping plot.
<Figure size 1000x600 with 0 Axes>

All sections#

def plotPanel(section,n,label):
    ax = plt.subplot(7,3,n+1)
    plt.plot(section.time,section.values, lw=2, label=label)
    plt.title(section.sections.values,fontsize=12)
    plt.grid()
    if n in [0,3,6,9,12,15,18]: plt.ylabel('Transport (Sv)')
    
    return
fig = plt.figure(figsize=(18,18))
for n in range(0,len(ds.sections)): 
  for i in range(0,len(casename)):
    plotPanel(transports[i].transport[n,:],n,label[i])
    
fig.text(0.5,0.9,'Case = '+str(casename[0]),horizontalalignment='center',fontsize=14)
plt.subplots_adjust(hspace=0.3)
plt.legend(fontsize=12);
_images/f32761b410ab8bc6cfa9159a01f7226fbd4767d444eba33000cb878846eaa902.png