vo#

# Parameters
variable = "vo"
stream = "z"
long_name = "Sea Water Y Velocity"
from IPython.display import display, Markdown
# Dynamically generate markdown content
markdown_text = f" This notebook compares area-weighted maps, in some cases, vertical profiles for {variable} in different basins."

# Display the updated markdown content
display(Markdown(markdown_text))

This notebook compares area-weighted maps, in some cases, vertical profiles for vo in different basins.

%load_ext autoreload
%autoreload 2
%%capture 
# comment above line to see details about the run(s) displayed
import sys, os
sys.path.append(os.path.abspath(".."))
from misc import *
import glob
print("Last update:", date.today())
%matplotlib inline
months = ['January', 'February', 'March', 'April', 
          'May', 'June', 'July', 'August', 'September', 
          'October', 'November', 'December']
# load data
ds = []
for c, p in zip(casename, climo_path):
  file = glob.glob(p+'{}.{}.{}.??????-??????.nc'.format(c, stream, variable))[0]
  ds.append(xr.open_dataset(file))
def identify_xyz_dims(dims):
    dims = tuple(dims)

    z_options = ['zl', 'z_l', 'zi', 'z_i']
    y_options = ['yh', 'yq']
    x_options = ['xh', 'xq']

    z_dim = next((dim for dim in dims if dim in z_options), None)
    y_dim = next((dim for dim in dims if dim in y_options), None)
    x_dim = next((dim for dim in dims if dim in x_options), None)

    # Set default values for coordinates and area
    x_coord = y_coord = area_var = None

    if y_dim == 'yh' and x_dim == 'xh':
        x_coord = 'geolon'
        y_coord = 'geolat'
        area_var = 'areacello'
    elif y_dim == 'yq' and x_dim == 'xh':
        x_coord = 'geolon_v'
        y_coord = 'geolat_v'
        area_var = 'areacello_cv'
    elif y_dim == 'yh' and x_dim == 'xq':
        x_coord = 'geolon_u'
        y_coord = 'geolat_u'
        area_var = 'areacello_cu'

    return x_dim, y_dim, z_dim, x_coord, y_coord, area_var
dims = identify_xyz_dims(ds[0][variable+'_annual_mean'].dims)
def annual_plot(variable, dims, label):
    area = grd_xr[0][dims[5]].fillna(0)
    x = dims[0]; y = dims[1]; z = dims[2]
    lon = dims[3]; lat = dims[4] 
    model = []
    for i in range(len(label)):
        if z is None:
            model.append(np.ma.masked_invalid(ds[i][variable+'_annual_mean'].values))
        else:
            model.append(np.ma.masked_invalid(ds[i][variable+'_annual_mean'].isel({z: 0}).values))

        if i == 0:
            xyplot(model[i], 
                grd_xr[i].geolon.values, grd_xr[i].geolat.values, area.values,
                title = 'Annual mean '+str(variable)+ ' ('+str(ds[0].units)+')', 
                suptitle= label[i]+', '+ str(start_date) + ' to ' + str(end_date), 
                extend='max')
        else:
            xyplot((model[i]-model[0]), 
                grd_xr[i].geolon.values, grd_xr[i].geolat.values, area.values,
                title = 'Annual mean '+str(variable)+ ' ('+str(ds[0].units)+')', 
                suptitle= label[i]+' - '+label[0]+', '+ str(start_date) + ' to ' + str(end_date), 
                extend='max')
            
    fig, ax = plt.subplots(figsize=(8,4))
    for i in range(len(label)):
        if z is None:
            ds[i][variable+'_annual_mean'].weighted(area).mean(x).plot(y=y, 
                                            ax=ax, label=label[i])
        else:
            ds[i][variable+'_annual_mean'].isel({z: 0}).weighted(area).mean(x).plot(y=y, 
                                            ax=ax, label=label[i])
            
    ax.set_title('Zonally averaged '+str(variable)+' ('+str(ds[0].units)+'), annual mean')
    ax.grid()
    ax.legend();
    return

Annual mean#

annual_plot(variable, dims, label)
../_images/e3784e14b24fc2b1a4b0bbb8144d2295b5db03524ac3966b58a33f275534f658.png ../_images/d531c86dc21743df00e38562eb872292df35792e772144731eb03c13f2dccf7c.png

Monthly climatology#

area = grd_xr[0][dims[5]].fillna(0)
x = dims[0]; y = dims[1]; z = dims[2]
lon = dims[3]; lat = dims[4]
model = []
for i in range(len(label)):
    if z is None:
        model.append(ds[i][variable+'_monthly_climatology'])
    else:
        model.append(ds[i][variable+'_monthly_climatology'].isel({z: 0}))
        
    if i == 0:
        g = model[i].plot(x='geolon', y='geolat', col='month', col_wrap=3,
            figsize=(12,12), robust=True,
            cbar_kwargs={"label": variable + ' ({})'.format(str(ds[0].units)),
                        "orientation": "horizontal", 'shrink': 0.8, 'pad': 0.05})
        
        plt.suptitle(label[i]+ ', ' +str(start_date) + ' to ' + str(end_date), y=1.02, fontsize=17)  

    else:
        g = (model[i]-model[0]).plot(x='geolon', y='geolat', col='month', col_wrap=3,
            figsize=(12,12), robust=True,
            cbar_kwargs={"label": variable + ' ({})'.format(str(ds[0].units)),
                        "orientation": "horizontal", 'shrink': 0.8, 'pad': 0.05})
        plt.suptitle(label[i] + ' - ' + label[0]+ ', ' +str(start_date) + ' to ' + str(end_date), 
                     y=1.02, fontsize=17)  
../_images/7ff5d03926062d1f42528717f73db0b1591bdae830d103d5c563565e71442020.png
def monthly_plot(variable, dims, label, m):
    area = grd_xr[0][dims[5]].fillna(0)
    x = dims[0]; y = dims[1]; z = dims[2]
    lon = dims[3]; lat = dims[4]
          
    fig, ax = plt.subplots(figsize=(8,4))
    for i in range(len(label)):
        if z is None:
            ds[i][variable+'_monthly_climatology'].isel(month=m).weighted(area).mean(x).plot(y=y, 
                                               ax=ax, label=label[i])
        else:
            ds[i][variable+'_monthly_climatology'].isel({z: 0, 'month': m}).weighted(area).mean(x).plot(y=y, 
                                                ax=ax, label=label[i])
    ax.set_title(str(months[m])+', zonally averaged '+str(variable)+' ('+str(ds[0].units)+')')
    ax.grid()
    ax.legend();
    return

January#

m=0
monthly_plot(variable, dims, label, m)
../_images/9c8ab0b9ae25d2adb808cdcf8e4e1b959ccfaf28ad23089ecc60457ae82b8f08.png

February#

m=1
monthly_plot(variable, dims, label, m)
../_images/ffb8856250ec1b056d3c1bd3d9a0d8efe8d118e7ab494b806775bebaccb66bc5.png

March#

m=2
monthly_plot(variable, dims, label, m)
../_images/1c927a8988f31e6bda7d3e67cdc68e7ff9e7bd107e24d0e2587da819972c6c90.png

April#

m=3
monthly_plot(variable, dims, label, m)
../_images/bb8b6feb3f778c69615e9654abc2e0fa0a0e5615842f6c0b4a1ca21ddb8dea3e.png

May#

m=4
monthly_plot(variable, dims, label, m)
../_images/c36f5c7cff3d31a08cd4a0c5dfa8b30759186df7e4d7546685a65872f994a72f.png

June#

m=5
monthly_plot(variable, dims, label, m)
../_images/a9afd2f0a33f1cb4d5f642e941d00f7040fa1ed8f1e5168f227a51f32e1900b8.png

July#

m=6
monthly_plot(variable, dims, label, m)
../_images/2477c8f04d0d82dfd51c0a98dfd47c24c6cef6ee9a8f311d0ff33bb90355ddb1.png

August#

m=7
monthly_plot(variable, dims, label, m)
../_images/8c2ad51d573083f7c80350aa0096852c179c79f7d613f909182375a26a20cdac.png

September#

m=8
monthly_plot(variable, dims, label, m)
../_images/aa5a77a30f5a97f6b6804c1e0c817cc43d6713cad3898ffd685b4fc9fff01100.png

October#

m=9
monthly_plot(variable, dims, label, m)
../_images/9434de142b52b422f986dee2d92b69c0ef60a8eff955d70cda6da86f8d588aa5.png

November#

m=10
monthly_plot(variable, dims, label, m)
../_images/6bdc3c556afaebc9c45cd4b57b21e51292ddd6459edb3ca4a077fe3c5e8adf8f.png

December#

m=11
monthly_plot(variable, dims, label, m)
../_images/fd3bd624140ec12426674bf27a13ff5bf772c4c35104ad54b7ccb9f603b76540.png

By basins#

Monthly climo @ surface#

# GMM, update this
basin_code = xr.open_dataset('/glade/work/gmarques/cesm/tx2_3/basin_masks/basin_masks_tx2_3v2_20250318.nc')['basin_masks']
area = grd_xr[0][dims[5]].fillna(0)
x = dims[0]; y = dims[1]; z = dims[2]
model_mean_wgt = []
    
for i in range(len(label)):
    basin_code_dummy = basin_code.rename({'yh': y, 'xh': x})
    if z is None:
        model = ds[i][variable+'_monthly_climatology']
    else:
        model = ds[i][variable+'_monthly_climatology'].isel({z: 0})
    
    model_mean_wgt.append((model * basin_code_dummy).weighted(area*basin_code_dummy).mean(dim=[y, x]))

# Concatenate along a new dimension
model_mean_wgt_all = xr.concat(model_mean_wgt, dim='cases')
model_mean_wgt_all = model_mean_wgt_all.assign_coords({'cases': label})

g = model_mean_wgt_all.plot(x="month", hue="cases", yincrease=False, col="region", col_wrap=5)
    
fig = g.fig  # not g.figure
fig.suptitle(str(variable)+' ('+str(ds[0].units)+')', fontsize=16)
fig.tight_layout()
fig.subplots_adjust(top=0.9)
for ax in g.axes.flat:
    ax.grid(True);
../_images/2d2eede702ef76bf4862970fd64d65e646a251779faf7c48030d18ab684b4a29.png

Vertical profiles#

Averaged over annual means

z_max=1000 # change this to 6000 to see full profile

if stream == 'z' and (z == 'z_l' or z == 'z_i'):

    model_mean_wgt = []
    
    for i in range(len(label)):
        basin_code_dummy = basin_code.rename({'yh': y, 'xh': x})
        model = ds[i][variable+'_annual_mean']
        
        model_mean_wgt.append((model * basin_code_dummy).weighted(area*basin_code_dummy).mean(dim=[y, x]))

    # Concatenate along a new dimension
    model_mean_wgt_all = xr.concat(model_mean_wgt, dim='cases')
    model_mean_wgt_all = model_mean_wgt_all.assign_coords({'cases': label})
    
    g = model_mean_wgt_all.sel(**{z: slice(0., z_max)}).plot(y=z, hue="cases", yincrease=False, col="region", col_wrap=5, lw=2)
    
    fig = g.fig  # not g.figure
    fig.suptitle(str(variable)+' ('+str(ds[0].units)+')', fontsize=16)
    fig.tight_layout()
    fig.subplots_adjust(top=0.9)
    # Apply grid to each subplot
    for ax in g.axes.ravel():
        ax.grid(True)
../_images/784c82c1d0d1d81252227d8a7ff3195b4559159a520cdeb1518491cad0558c05.png